Automatic Definition of an Anatomic Field of View for Volumetric Cardiac Motion Estimation at High Temporal Resolution
نویسندگان
چکیده
Fast volumetric cardiac imaging requires reducing the number of transmit events within a single volume. One way of achieving this is by limiting the field of view (FOV) of the recording to the myocardium when investigating cardiac mechanics. Although fully automatic solutions towards myocardial segmentation exist, translating that information in a fast ultrasound scan sequence is not trivial. In particular, multi-line transmit (MLT) scan sequences were investigated given their proven capability to increase frame rate (FR) while preserving image quality. The aim of this study was therefore to develop a methodology to automatically identify the anatomically relevant conically shaped FOV, and to translate this to the best associated MLT sequence. This approach was tested on 27 datasets leading to a conical scan with a mean opening angle of 19.7◦ ± 8.5◦, while the mean “thickness” of the cone was 19◦ ± 3.4◦, resulting in a frame rate gain of about 2. Then, to subsequently scan this conical volume, several MLT setups were tested in silico. The method of choice was a 10MLT sequence as it resulted in the highest frame rate gain while maintaining an acceptable cross-talk level. When combining this MLT scan sequence with at least four parallel receive beams, a total frame rate gain with a factor of approximately 80 could be obtained. As such, anatomical scan sequences can increase frame rate significantly while maintaining information of the relevant structures for functional myocardial imaging.
منابع مشابه
Advanced Motion Correction Methods in PET
With the arrival of increasingly higher resolution PET systems, small amounts of motion can cause significant blurring in the images, compared to the intrinsic resolutions of the scanners. In this work, we have reviewed advanced correction methods for the three cases of (i) unwanted patient motion, as well as motions due to (ii) cardiac and (iii) respiratory cycles. For the first type of ...
متن کاملVolumetric thermometry
Background/introduction Many applications of thermal therapy would benefit from temperature distribution measurements with high spatial and temporal resolution that cover a large 3D volume. Although MRI can acquire 3D temperature measurements, it is not possible to obtain fully sampled 3D MRI measurements that cover the insonified field of view with sufficient spatial and temporal resolution fo...
متن کاملPredictive Modelling of Cardiac 2D Multi-Slice MRI with Simultaneous Resolution of Cardiac and Respiratory Motion
This paper introduces a novel approach to modelling of volumetric cardiac magnetic resonance imaging (MRI) with simultaneous resolution of cardiac and respiratory motion. The major challenge is that the inherent slow nature of MRI prevents obtaining real-time volumetric images of the heart with sufficient spatial and temporal resolution. To overcome this problem our method predicts pixel intens...
متن کاملNew adaptive interpolation schemes for efficient meshbased motion estimation
Motion estimation and compensation is an essential part of existing video coding systems. The mesh-based motion estimation (MME) produces smoother motion field, better subjective quality (free from blocking artifacts), and higher peak signal-to-noise ratio (PSNR) in many cases, especially at low bitrate video communications, compared to the conventional block matching algorithm (BMA). Howev...
متن کاملPseudo Zernike Moment-based Multi-frame Super Resolution
The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...
متن کامل